This is a mirror of official site: http://jasper-net.blogspot.com/

Readings in Distributed Systems

| Sunday, January 2, 2011
I. The Google Papers

A complete list of papers written by Googlers is here. The 5 papers below describe the core of their MapReduce/GoogleFS/BigTable system.

1. The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients.
While sharing many of the same goals as previous distributed file systems, our design has been driven by observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system assumptions. This has led us to reexamine traditional choices and explore radically different design points.

The file system has successfully met our storage needs. It is widely deployed within Google as the storage platform for the generation and processing of data used by our service as well as research and development efforts that require large data sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of disks on over a thousand machines, and it is concurrently accessed by hundreds of clients.

In this paper, we present file system interface extensions designed to support distributed applications, discuss many aspects of our design, and report measurements from both micro-benchmarks and real world use.

2. Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber
Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery) and latency requirements (from backend bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google products. In this paper we describe the simple data model provided by Bigtable, which gives clients dynamic control over data layout and format, and we describe the design and implementation of Bigtable.
3. The Chubby Lock Service for Loosely-Coupled Distributed Systems

Mike Burrows
We describe our experiences with the Chubby lock service, which is intended to provide coarse-grained locking as well as reliable (though low-volume) storage for a loosely-coupled distributed system. Chubby provides an interface much like a distributed file system with advisory locks, but the design emphasis is on availability and reliability, as opposed to high performance. Many instances of the service have been used for over a year, with several of them each handling a few tens of thousands of clients concurrently. The paper describes the initial design and expected use, compares it with actual use, and explains how the design had to be modified to accommodate the differences.


Read more: Bytepawn

Posted via email from .NET Info

0 comments: